پلاسکو

ساختمان پلاسکو، ساختمانی تجاری در ضلع شمال شرقی چهارراه استانبول، تهران بود. و از آن به‌عنوان اولین آسمان‌خراش و ساختمان مدرن خاورمیانه یاد می‌شد. این ساختمان ۱۷ طبقه با اسکلتِ فلزی که در سال ۱۳۴۱ افتتاح شده بود، یکی از مهمترین مراکز تولید و فروش پوشاک در تهران بود. ساختمان پلاسکو در روز پنج‌شنبه ۳۰ دی ۱۳۹۵ پس از ۵۴ سال از زمان ساخت بر اثر آتش‌سوزی فرو ریخت و ۵۶۰ واحد تجاری در آن نابود شد

ساختمان پلاسکو شامل ۱۷ طبقه (یک طبقه زیرزمین، یک طبقه همکف و ۱۵ طبقه روی پیلوت) و سازه آن از نوع اسکلت فلزی بود. متراژ تقریبی زیربنای ساختمان پلاسکو ۲۹ هزار  متر مربع بود و طبقات اول تا چهارم مساحت بیشتری نسبت به سایر طبقات داشتند. سازه ساختمان پلاسکو تمام فولادی بود و حتی نمای بیرونی آن کلاف کشی و با فولاد بسته شده بود که با این شیوه ساخت استوار، مهندسین عمر مفید آن را ۲۰۰ سال تخمین می‌زدند

آسیب‌شناسی حادثه پلاسکو

 رفتار فولاد ساختمانی در شرایط آتش‌سوزی

 فولاد ساختمانی علیرغم مقاومت و شکل‌پذیری مناسب در دمای محیط، در دماهای بالا به‌شدت دچار افت مقاومت می‌شود. در شرایط آتش‌سوزی، دمای محیط بسته به‌شدت آتش می‌تواند تا 1000 درجه سانتی‌گراد بالا رود، به‌تبع آن دمای سازه افزایش، مقاومت آن کاهش می‌یابد. به‌عنوان مثال، فولاد ساختمانی بیش از 55 درصد مقاومت اولیه خود را تا دمای 600 درجه سانتی‌گراد از دست می‌دهد[‌1]. این تنها یک روی سکه است. روی دیگر، به وجود آمدن نیروهای ثانویه بزرگ در سازه در اثر انبساط حرارتی اجزای سازه است[‌2 و 3]. این دو عامل باعث به وجود آمدن تغییر شکل‌های بزرگ و سپس گسیختگی سازه می‌شوند

 “مکانیزم خرابی ساختمان پلاسکو”

:خرابی ساختمان اسکلت فلزی پلاسکو به‌طور خلاصه شامل مراحل زیر بوده است

الف- در اثر شدت حرارت آتش‌سوزی، ابتدا تیرهای سقف در طبقات حدود دهم، دچار تغییرشکل‌های بزرگ می‌شوند. چیزی شبیه تصاویر زیر که به‌ترتیب مربوط به آتش‌سوزی سال 1991 ساختمان‌ 38 طبقه وان مِریدیَن پلازا در فیلادلفیای آمریکا (شکل 1) و آتش‌سوزی سال 1990 ساختمان 14 طبقه برودگیت لندن در انگلستان (شکل 2) است [‌3]3

شکل 1: تغییر شکل تیرهای ساختمان وان مِریدیَن پلازا در اثر آتش‌سوزی 19 ساعته [‌3]3

شکل 2: تغییر شکل تیرها و ستون‌های ساختمان برُودگِیت در اثر آتش‌سوزی 4/5 ساعته [‌3]3

ب- در اثر نیروهای ثانویه به‌وجود آمده و افت مقاومت، اتصالات تیر به ستون دچار گسیخته می‌شوند

ج- کل سقف هر طبقه روی سقف زیرین فرومی‌ریزد و باعث پرتاب شدن دود و غبار به بیرون از پنجره‌ها (شبیه انفجار) می‌شود، درواقع انفجاری رخ نداده است (شکل 3)3

شکل 3: ریزش پی‌درپی سقف‌ها در داخل ساختمان پلاسکو و پرتاب دود و غبار از پنجره‌ها

د- با ریزش سقف، ستون‌ها مهار جانبی خود را از دست داده و با همراهی افت مقاومت فولاد، ستون‌ها نیز خراب می‌شوند

ه- به دلیل نوع سیستم سازه‌ای بکار رفته در ساختمان پلاسکو، ساختمان دچار خرابی پیش‌رونده می‌شود. در این نوع خرابی با از دست رفتن یکی از اعضای سازه‌ای اصلی، سایر اعضاء قادر به تحمل بارهای اضافی نبوده و با خرابی پی‌درپی، درنهایت کل ساختمان آوار می‌شود. مشابه این نوع خرابی قبلاً در حادثه 11 سپتامبر 2001 برج‌های شماره یک و دو مجتمع تجارت جهانی نیویورک در آمریکا (شکل 4) و آتش‌سوزی سال 2005 ساختمان 32 طبقه ویندزور در مادرید اسپانیا (شکل 5) رخ داده است [‌6]6

طراحی و اجرای معماری داخلی و خارجی

شکل 4: خرابی پیش‌رونده برج شماره یک مجتمع تجارت جهانی در اثر آتش‌سوزی (نیویورک 2001)1

شکل 5: ساختمان وینزور قبل و بعد از آتش‌سوزی شامل خرابی پیش‌رونده طبقات 21 تا 32 (مادرید 2005)5

 “عمق فاجعه فراتر از فروریختن یک ساختمان 54 ساله است”
ساختمان پلاسکو در برابر آتش طراحی نشده بود. اما تاب آوردن یک ساختمان در برابر آتش به روش طراحی سازه آن بستگی دارد و نه قدیمی یا جدید بودن آن. متأسفانه تفاوت ساختمان‌های جدید با ساختمان پلاسکو، فقط مقاومت آن‌ها در برابر زلزله است و نه آتش. تا لحظه نگارش این نوشتار، در ایران هنوز طرح سازه‌ها در برابر آتش الزامی نبوده و حتی در آیین‌نامه‌های طراحی ساختمان‌های ایران (ازجمله مبحث دهم مقررات ملی ساختمان[‌5]) وارد نشده است. تأکید بر قدیمی بودن ساختمان پلاسکو در گزارش‌ها، غیر کارشناسی و گمراه‌کننده است و این سرنوشت شوم می‌تواند در انتظار تک‌تک برج‌های اسکلت فلزی غیر مقاوم در برابر آتش و البته پرزرق‌وبرق جدید و امروزی در هر جای دنیا باشد

 در کشورهای پیشرفته، بیش از 50 سال است حفاظت سازه‌های فولادی در برابر آتش‌سوزی الزامی است
سازه‌های فولادی را باید با استفاده از پوشش‌های ضد حریق مقاوم‌سازی نمود. این روش صرفاً باعث به تأخیر انداختن افزایش دما در سازه می‌شود، تا سازه زمان بیشتری در آتش‌سوزی تاب آورده و برای فرار ساکنین و مهار آتش مجالی فراهم گردد. یا اینکه سازه فولادی را در برابر آتش‌سوزی طراحی نمود (راهکار مهندسی سازه در آتش)، به‌گونه‌ای که سازه خود بتواند بار آتش را از سر بگذراند. این راهکار اکیداً برای طراحی ساختمان‌های بلند توصیه می‌شود. در این ساختمان‌ها به دلیل سرایت و انتشار سریع آتش، همچنین سخت‌تر بودن مهار آتش و طولانی شدن زمان آتش‌سوزی، راهکار اول به‌تنهایی کافی نیست و پیشگیری از خرابی پیش‌رونده را تضمین نمی‌کند [‌8 – 6]6

راهکار مهندسی سازه در آتش، پس از حادثه 11 سپتامبر 2001 نیویورک موردتوجه پژوهشگران قرارگرفته و از آن زمان تاکنون از موضوعات تحقیقاتی روز دنیاست. پژوهش در این حوزه جذاب اما علاوه بر نیاز به تجهیزات آزمایشگاهی خاص، خطرات، هزینه بسیار بالای آزمایش‌ها و پیچیدگی‌های خاص خود را به همراه دارد. تحقیقات صورت گرفته در این زمینه در کشور بسیار اندک و انگشت‌شمار است [‌10 و 9]. لذا لزوم پژوهش، توسعه و تربیت نیروی متخصص در این زمینه بسیار محسوس است
در این حادثه مهم‌تر از معرفی مقصر، شناخت راهکارهای مؤثر جهت جلوگیری از تکرار چنین فجایعی است. آخر سخن، اینکه در صورت عبور از زلزله، آتش‌سوزی پس از زلزله تهدیدی جدی‌تر نه‌فقط برای ساختمان، بلکه برای تمام شهر یا کلان‌شهر خواهد بود

منابع

  1.  Rezaeian A, Yahyai M. Fire response of steel column-tree moment resisting frames. Materials and Structures (2015) 48:1771-1784, doi: 10.1617/s11527-014-0271-1.

  2.  Yahyai M, Rezaeian A. Behavior of beams in bolted column-tree frames at elevated temperature. Fire and Materials (2015) 40:482-497, doi: 10.1002/fam.2305.

  3.  NIST. “Final report on the collapse of world trade center building 7”. NIST NCSTAR 1A, NIST, Gaithersburg, MD, (2008).

  4.  Kodur V, Yahyai M, Rezaeian A, Eslami M, Poormohamadi A. Residual mechanical properties of high strength steel bolts subjected to heating-cooling cycle, Journal of Constructional Steel Research (2017) 131:122–131.

  5.  وزارت مسکن و شهرسازی، معاونت امور مسکن و ساختمان؛ «مبحث دهم مقررات ملی ساختمان، طرح و اجرای ساختمان‌های فولادی»؛ ویرایش چهارم، 1392

  6.  محمود یحیائی و عباس رضائیان. “عملکرد اتصال پیچی لینک به دستک در قاب‌های خمشی درختی تحت اثر آتش‌سوزی”، نشریه علمی- پژوهشی مهندسی سازه و ساخت، شماره سوم، 1394

  7.  محمود یحیایی، عباس رضائیان و مهدی صفائیان. ” رفتار ستون-های فولادی با مقطع باکس در دماهای بالا”، کنفرانس ملی حفاظت ساختمان‌ها و سیستم‌های حمل‌ونقل در برابر آتش، مرکز تحقیقات راه، مسکن و شهرسازی، تهران، 1395

  8.  عباس رضائیان، محمود یحیایی. ” رفتار اتصالات فولادی تیر به ستون در شرایط آتش‌سوزی”، دومین همایش ملّی مهندسی سازه ایران، تهران، 1394

  9.  عباس رضائیان و مرضیه ابراهیم‌زاده. “ارزیابی ایمنی ساختمان‌های بسیار بلند در آتش‌سوزی: مطالعه موردی برج شانگهای”، دومین کنفرانس ملی بناهای بلند، وزارت راه و شهرسازی، تهران، 1394

  10.  عباس رضائیان و محمود یحیایی، رفتار تیرهای فولادی در قاب‌های خمشی درختی پیچی در حرارت بالا. چهارمین کنفرانس ملی سازه و فولاد، تهران 1392

نوشته شده توسط تیم تحریریه مهندسین مشاور آرشکو